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Nonthermal Radiation from Nonstationary Kerr
Black Hole
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A crossing of the positive and negative Dirac energy levels occurs near a
nonstationary Kerr black hole. The maximum value of the energy of a particle
in the nonthermal radiation depends not only on the dragging velocity, but also
the evaporation rate and the event horizon shape of the black hole.

The line element of the nonstationary Kerr space-time represented by
the advanced Eddington coordinate is given by (Carmeli and Kaye, 1977):
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where p? = r2 + a? cos?0, M = M(v), a = a(v).
The nonzero contravariant components of the metric tensor are
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where A = r2 + @2 — 2Mr.
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Substituting (2) into the Hamilton—Jacobi equation (Damour, 1977)
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where S = S(v, r, 0, &) is the master function, and . is the mass of the particle.

Given the generalized tortoise coordinate transformation as (Zhao and
Dai, 1991)
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where fy = dry/dv, riy = dry/00. Then equation (4) can be written as
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There exists a Killing vector (/)™ in the space-time, so that
ps = m = 95/0¢ = const 8)

Let us define
A as

w = aV* ’ D2 = ae* (9)

Equation (7) can be reduced to
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Its solutions are
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Because both s and 85/dr, are real numbers, we get
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This is the relation that the energy levels of Dirac particles have to satisfy
in space-time. Let us adopt the equality in (14); it can be written as
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The distribution of the energy levels of the Dirac vacuum is given by
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and
0= (20)
The forbidden region is
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the width of which is
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Now let us consider the case near the event horizon ry. We have
lim A = (r} + a®)(1 — 2/y) + Fha® sin? — 2Mry + (ri)* = 0
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This is just the null surface condition, so the limit of A is zero. With (15)-(18)
we get
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This means that the width of the forbidden region vanishes at the event
horizon. When r goes to infinity we have

= 1 (26)

The distribution of the Dirac energy levels goes to that in the Minkowski
space-time. Relations (15)—(21) show the distribution of the Dirac energy
levels in the nonstationary Kerr space-time. There exists a crossing of the
positive and negative energy levels near the event horizon. The Starobinsky—
Unruh process (spontaneous radiation) must occur when wy, > +p. This
means that there is radiation from the region near the event horizon. This
quantum effect is nonthermal. It is independent of temperature of the black
hole. The maxifmum energy of a particle in this effect is wy. It is very
interesting that w, depends not only on the dragging velocity Qy [~a/(r} +
a®)], but also the evaporation rate (~ry) as well as the event horizon shape
(~rp) of the black hole.
When 7y = 0 and ry = 0, we have
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am 28)
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They reduce to the well-known stationary Kerr space-time results,
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